1. The Distributed Nature of Working Memory. Christophel T.B., Klink P.C., Spitzer B., Roelfsema P.R., Haynes J.D. (2017) Trends Cogn Sci.: S1364-6613(16)30217-0. [PDF]
  2. Paying Attention to the Cortical Layers. Self M.W., Roelfsema P.R. (2017) Neuron. Jan 4;93(1):9-11. [PDF]
  3. Layer-specificity in the effects of attention and working memory on activity in primary visual cortex. van Kerkoerle T., Self M.W., Roelfsema P.R. (2017) Nat Commun. Jan 5;8:13804. [PDF]
  4. 3D printing and modelling of customized implants and surgical guides for non-human primates. Xing Chen, Jessy K. Possel, Catherine Wacongne, Anne F. van Ham,P. Christiaan Klink, Pieter R. Roelfsema. (2017) Journal of Neuroscience Methods, 286:38–55. [PDF]
  5. Electrochemical Measurement Of Acetylcholine In The Dorsolateral Prefrontal Cortex: A Technical Report. Devavrat Vartak, Chris van der Togt, Bram van Vugt, Pieter R Roelfsema.
  6. Neuroscience: Out of Sight but Not Out of Mind. Self M.W., Roelfsema P.R. Curr Biol. 2017 Apr 3;27(7):R269-R271. [PDF]
  7. Flat versus hierarchical decision-making in the visual cortex. Zylberberg, A., Lorteije, J.A.M., Ouellette, B.G., De Zeeuw, C.I., Sigman, M. and Roelfsema, P.R. (2017) eLife 6, e17331. DOI: 10.7554/eLife.17331. [PDF]


  1. Learning a New Selection Rule in Visual and Frontal Cortex. Chris van der Togt, Liviu Stanisor, Arezoo Pooresmaeili, Larissa Albantakis, Gustavo Deco, and Pieter R. Roelfsema. (2016) Cerebral Cortex, 26: 3611–3626 [PDF]
  2. Binocular rivalry outside the scope of awareness. Klink PC, Roelfsema PR. Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):8352-4.[PDF]
  3. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex. Self MW, Peters JC, Possel JK, Reithler J, Goebel R, Ris P, Jeurissen D, Reddy L, Claus S, Baayen JC, Roelfsema PR. PLoS Biol. 2016 Mar 25;14(3) [PDF]
  4. Texture Segregation Causes Early Figure Enhancement and Later Ground Suppression in Areas V1 and V4
    of Visual Cortex.
    Poort J, Self MW, van Vugt B, Malkki H, Roelfsema PR. Cereb Cortex. 2016 Oct;26(10):3964-76 [PDF]
  5. Early Visual Cortex as a Multiscale Cognitive Blackboard. Pieter R. Roelfsema and Floris P. de Lange. Annu. Rev. Vis. Sci. 2016. 2:131–51 [PDF]
  6. Serial grouping of 2D-image regions with object-based attention in humans. Jeurissen D, Self MW, Roelfsema PR. Elife. 2016 Jun 13;5. [PDF]


  1. Belief states as a framework to explain extra-retinal influences in visual cortex. Hendrikje Nienborg; Pieter R Roelfsema. (2015) Current Opinion in Neurobiology, 32 45-52. [PDF]
  2. Contextual effects on perceived contrast: Figure–ground assignment and orientation contrast. Matthew W. Self, Aart Mookhoek, Nienke Tjalma and Pieter R. Roelfsema. (2015) Journal of Vision 15(2):2, 1–21.[PDF]
  3. Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1. Bruno Dagnino, Marie-Alice Gariel-Mathis, and Pieter R. Roelfsema. (2015) J Neurophysiol 113: 730–739. [PDF]
  4. How Attention Can Create Synaptic Tags for the Learning of Working Memories in Sequential Tasks
    Jaldert O. Rombouts, Sander M. Bohte, Pieter R. Roelfsema. (2015) PLOS Computational Biology, March 5;1:34 [PDF]
  5. Scene perception in early vision: Figure-ground organization in the lateral geniculate nucleus. Matthew W. Self and Pieter R. Roelfsema. PNAS, June 2, 2015, 112(22), 6784–6785. [PDF]
  6. A learning rule that explains how rewards teach attention. Jaldert O. Rombouts, Sander M. Bohte1, Julio Martinez-Trujillo, and Pieter R. Roelfsema. Visual Cognition, 2015, Vol. 23, Nos. 1–2, 179–205. [PDF]
  7. Methods and theories in the scientific study of consciousness. Klink, P.C., Self, M.W., Lamme, V.A., & Roelfsema, P.R. (2015). The Constitution of Phenomenal Consciousness: Towards a Science and Theory, ed. S. Miller, Advances in Consciousness Research. John Benjamins Publishing Company. [PDF]
  8. The Formation of Hierarchical Decisions in the Visual Cortex. Lorteije JA, Zylberberg A, Ouellette BG, De Zeeuw CI, Sigman M, Roelfsema PR. Neuron. 2015, 87(6):1344-56. [PDF]
  9. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks. Brosch T, Neumann H, Roelfsema PR (2015) PLoS Comput Biol 11(10): e1004489. doi:10.1371/ journal.pcbi.1004489. [PDF]
  10. Learning of anticipatory responses in single neurons of the human medial temporal lobe. Leila Reddy, Marlene Poncet, Matthew W. Self, Judith C. Peters, Linda Douw, Edwin van Dellen, Steven Claus, Jaap C. Reijneveld, Johannes C. Baayen & Pieter R. Roelfsema. Nat Commun. 2015 Oct 9;6:8556.[PDF]


  1. Simultaneous selection by object-based attention in visual and frontal cortex. Pooresmaeili A, Poort J, Roelfsema PR. (2014) Proc Natl Acad Sci U S A. 111(17):6467-6472.[PDF]
  2. Inhibitory Interneuron Classes Express Complementary AMPA-Receptor Patterns in Macaque Primary Visual Cortex. Roxana N. Kooijmans, Matthew W. Self, Floris G. Wouterlood, Jeroen A.M. Belien, and Pieter R. Roelfsema. (2014) J. Neurosci., 34(18):6303–6315. [PDF]
  3. Basic neuroscience research with nonhuman primates: a small but indispensable component of biomedical research. Roelfsema PR, Treue S. Neuron. 2014 Jun 18;82(6):1200-4. [PDF]
  4. Variance misperception explains illusions of confidence in simple perceptual decisions. Zylberberg A, Roelfsema PR, Sigman M. Conscious Cogn. 2014 Jun 18;27C:246-253. [PDF]
  5. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Timo van Kerkoerle, Matthew W. Self, Bruno Dagnino, Marie-Alice Gariel-Mathis, Jasper Poort, Chris van der Togt, and Pieter R. Roelfsema. PNAS, 2014 Oktober 7; 111(40), 14332–41. [PDF]
  6. Orientation-tuned surround suppression in mouse visual cortex. Self MW, Lorteije JA, Vangeneugden J, van Beest EH, Grigore ME, Levelt CN, Heimel JA, Roelfsema PR. J Neurosci. 2014 Jul 9;34(28):9290-304. [PDF]
  7. A Growth-Cone Model for the Spread of Object-Based Attention during Contour Grouping. Arezoo Pooresmaeili and Pieter R. Roelfsema. Current Biology 24, 2869–2877, December 15, 2014. [PDF]


  1. A unified selection signal for attention and reward in primary visual cortex. Liviu Stanisor, Chris van der Togt, Cyriel M. A. Pennartz, and Pieter R. Roelfsema. (2013) PNAS, 110(22):9136-41. [PDF]
  2. Luminance contrast has little influence on the spread of object-based attention. Poppy Watson, Ilia Korjoukov, Devavrat Vartak, Pieter R. Roelfsema. (2013) Vision Research 85, 90–1031. [PDF]
  3. Surface reconstruction, figure-ground modulation, and border-ownership. Danique Jeurissen, Matthew W. Self, Pieter R. Roelfsema (2013):, Cognitive Neuroscience, 4:1, 50-52. [PDF]
  4. A neuronal device for the control of multi-step computations. A Zylberberg, L Paz, P R Roelfsema, S Dehaene, M Sigman. Papers in Physics 5, 050006 (2013) [PDF] [SUPPL]
  5. Distinct Roles of the Cortical Layers of Area V1 in Figure-Ground Segregation. Self MW, van Kerkoerle T, Supèr H, Roelfsema PR. Curr Biol. 2013 (13)01129-9.[PDF] [SUPPL][COMMENTARY]


  1. The Role of Attention in Figure-Ground Segregation in Areas V1 and V4 of the Visual Cortex. Jasper Poort, Florian Raudies, Aurel Wannig, Victor A.F. Lamme, Heiko Neumann, and Pieter R. Roelfsema. Neuron 75, 143–156. [PDF]
  2. Different glutamate receptors convey feedforward and recurrent processing in macaque V1. Self MW, Kooijmans RN, Supèr H, Lamme VA, Roelfsema PR. Proc Natl Acad Sci U S A. 109(27) : 11031-6. Epub 2012 May 21. [PDF]
  3. Q&A Interview with pieter Roelfsema [PDF]
  4. Optogenetics: Eye Movements at Light Speed. Self MW, Roelfsema PR. Curr Biol. 22(18):R804-6. [PDF]
  5. Frontal eye field microstimulation induces task-dependent gamma oscillations in the lateral intraparietal area. Premereur E, Vanduffel W, Roelfsema PR, Janssen P. J Neurophysiol. 108(5):1392-402. Epub 2012 Jun 6. [PDF]
  6. Decision Making during the Psychological Refractory Period. Zylberberg A, Ouellette B, Sigman M, Roelfsema PR. Curr Biol. 22(19):1795-9. [PDF]
  7. Task-Relevant and Accessory Items in Working Memory Have Opposite Effects on Activity in Extrastriate Cortex. Peters JC, Roelfsema PR, Goebel R. J Neurosci. 32(47):17003-17011. [PDF]
  8. The time course of perceptual grouping in natural scenes. Korjoukov I, Jeurissen D, Kloosterman NA, Verhoeven JE, Scholte HS, Roelfsema PR. Psychol Sci. 23(12):1482-9. [PDF]


  1. Different states in visual working memory: when it guides attention and when it does not. Christian N.L. Olivers, Judith Peters, Roos Houtkamp and Pieter R. Roelfsema. Trends in Cognitive Sciences, Vol. 15, No. 7; 327-334. [PDF]
  2. Attention-Voluntary Control of Brain Cells. Pieter R. Roelfsema. Science. Vol.332: 1512-1513. [PDF]
  3. Automatic spread of attentional response modulation along Gestalt criteria in primary visual cortex. Aurel Wannig, Liviu Stanisor and Pieter R Roelfsema. Nature Neuroscience. 14(10)1243:1244. [PDF]
  4. The human Turing machine: a neural framework for mental programs. Ariel Zylberberg, Stanislas Dehaene, Pieter R. Roelfsema and Mariano Sigman. Trends in Cognitive Sciences, Vol. 15, No. 7, 293:300 [PDF]
  5. Incremental grouping of image elements in vision. Pieter R. Roelfsema & Roos Houtkamp. Atten Percept Psychophys 73:2542–2572 [PDF]
  6. Surfing the attentional waves during visual curve tracing: Evidence from the sustained posterior contralateral negativity. Christine Lefebvre, Roberto Dell’Acqua, Pieter R. Roelfsema, and Pierre Jolicoeur. Psychophysiology, 48, 1509–1515. [PDF]


  1. Perceptual learning rules based on reinforcers and attention. Pieter R. Roelfsema Arjen van Ooyen and Takeo Watanabe, Trends in Cognitive Sciences 14(2):64-71. [PDF]
  2. Further evidence for the spread of attention during contour grouping: A reply to Crundall, Dewhurst, and Underwood Pieter R. Roelfsema, Roos Houtkamp, Ilia Korjoukov. Attention, Perception, & Psychophysics 72(3): 849-862 [PDF]
  3. A monocular, unconscious form of visual attention. Matthew W. Self and Pieter R. Roelfsema. Journal of Vision 10(4):17, 1-22 [PDF]
  4. The Brain’s Router: A Cortical Network Model of Serial Processing in the Primate Brain. Zylberberg A, Fernandez Slezak D, Roelfsema PR, Dehaene S, Sigman M (2010) PLoS Comput Biol 6(4): e1000765. [PDF]
  5. Separable Codes for Attention and Luminance Contrast in the Primary Visual Cortex. Arezoo Pooresmaeili, Jasper Poort, Alexander Thiele, and Pieter R. Roelfsema J. Neurosci. 2010;30 12701-12711. [PDF]
  6. Suppressive Lateral Interactions at Parafoveal Representations in Primary Visual Cortex. Arezoo Pooresmaeili, Jose L. Herrero, Matthew W. Self, Pieter R. Roelfsema, and Alexander Thiele. J. Neurosci. 2010;30 12745-12758 [PDF]
  7. Neuronal Activity in the Visual Cortex Reveals the Temporal Order of Cognitive Operations. Moro SI, Tolboom M, Khayat PS, Roelfsema PR. J Neurosci. 2010; 30(48):16293-16303. [PDF]
  8. Parallel and serial grouping of image elements in visual perception. Houtkamp R, Roelfsema PR. J Exp Psychol Hum Percept Perform. 2010 Dec;36(6):1443-59. [PDF]


  1. Time course of attentional modulation in the frontal eye field during curve tracing. Khayat PS, Pooresmaeili A, Roelfsema PR. J Neurophysiol. (2009) 101:1813-22. [PDF]
  2. Matching of visual input to only one item at any one time. Houtkamp R, Roelfsema PR. Psychol Res. (2009) 73:317-26. [PDF]
  3. Remembered but Unused: The Accessory Items in Working Memory that Do Not Guide Attention. Judith Peters, Rainer Goebel, and Pieter Roelfsema. J. Cogn. Neurosc. (2009) 21(6):10811091 [PDF]
  4. Noise Correlations Have Little Influence on the Coding of Selective Attention in Area V1. Jasper Poort and Pieter R. Roelfsema. Cereb Cortex, (2009) 19(3):543-53. Epub 2008 Jun 13. [PDF]
  5. Location and color biases have different influences on selective attention. Jillian H. Fecteau , Ilia Korjoukov a, Pieter R. Roelfsema. Vision Research (2009) 49:996-1005 [PDF]
  6. Additive Effects of Attention and Stimulus Contrast in Primary Visual Cortex. Alexander Thiele, Arezoo Pooresmaeili, Louise S. Delicato, Jose L. Herrero and Pieter R. Roelfsema Cerebral Cortex (2009) 19:2970-2981 [PDF]
  7. Modulation of the Contrast Response Function by Electrical Microstimulation of the Macaque Frontal Eye Field. Leeland B. Ekstrom, Pieter R. Roelfsema, John T. Arsenault, Hauke Kolster, and Wim Vanduffel J.Neuroscience (2009) 29(34):1068310694. [PDF]
  1. Bottom-Up Dependent Gating of Frontal Signals in Early Visual Cortex. Leeland B. Ekstrom, Pieter R. Roelfsema, John T. Arsenault, Giorgio Bonmassar, Wim Van duffel. Science 321, 424-417(2008) [PDF]


  1. Interactions between higher and lower visual areas improve shape selectivity of higher level neurons -Explaining crowding phenomena. Janneke F.M. Jehee, Pieter R. Roelfsema, Gustavo Deco, Jaap M.J. Murre, Victor A.F. Lamme. Brain Res. 1157, 167-176 (2007) [PDF]
  2. Boundary assignment in a recurrent network architecture. Janneke F.M. Jehee, Victor A.F. Lamme, Pieter R. Roelfsema. Vision Res. 47, 1153–1165 (2007) [PDF]
  3. Different Processing Phases for Features, Figures, and Selective Attention in the Primary Visual Cortex. Pieter R. Roelfsema, Michiel Tolboom, and Paul S. Khayat. Neuron 56, 785–792, (2007) [PDF]
    Supplemental Data [PDF]
    Commentary: Early Vision Is Early in Time. Robert Shapley. Neuron 56, 765-766 (2007) [PDF]
  4. A field of dreams Inner Presence: Consciousness as a Biological Phenomenon by Antti Revonsuo. Book review by: Matthew W. Self and Pieter R. Roelfsema. TRENDS in Cognitive Sciences 11(1), 6-7 [PDF]


  1. Synchrony dynamics in monkey V1 predict success in visual detection. Chris van der Togt, Stiliyan Kalitzin, Henk Spekreijse, Victor A.F. Lamme and Hans Supèr. Cereb Cortex. 2006 Jan;16(1):136-48. Epub 2005 Apr 20. [PDF]
  2. Attention lights up new object representations before the old ones fade away. Khayat PS, Spekreijse H, Roelfsema PR. J Neurosci. 2006 Jan 4;26(1):138-42. [PDF]
  3. The effect of Items in working memory on the deployment of attention and the eyes during visual search. Houtkamp, R., Roelfsema, P.R. (2006) J. Exp. Psych: Human Perception and Performance 2006, Vol. 32, No. 2, 423-442. [PDF]
  4. Cortical algorithms for perceptual grouping. Pieter R. Roelfsema (2006) Annu. Rev. Neurosci. 29:203-227. [PDF]


  1. Chronic multi-unit recordings in behaving animals: advantages and limitations. Hans Supèr, and Pieter R. Roelfsema (2005) Prog. Brain Res., 147, 263-282. [PDF]
  2. Elemental operations in vision. Roelfsema PR. (2005) Trends Cogn Sci. 9(5):226-33.
  3. Neural responses in cat visual cortex reflect state changes in correlated activity. Chris van der Togt, Henk Spekreijse, Hans Supèr. (2005) Eur. J. Neurosci. 22(2):465-75. [PDF]
  4. Attention-gated reinforcement learning of internal representations for classification. Roelfsema PR, van Ooyen A. (2005) Neural Comput. 17(10):2176-214.[PDF]


  1. Synchrony and covariation of firing primary visual cortex during contour grouping. Pieter R Roelfsema, Victor A F Lamme & Henk Spekreijse (2004) Nat. Neurosci. 7:982-991. [PDF]
  2. Correlates of transsaccadic integration in the primary visual cortex of the monkey. Paul S. Khayat, Henk Spekreijse, and Pieter R. Roelfsema (2004) PNAS 101:12712–12717 [PDF]
  3. Visual information transfer across eye movements in the monkey. Paul S. Khayat, Henk Spekreijse, and Pieter R. Roelfsema (2004) Vision Research 44:2901–2917 [PDF]
  4. Correspondence of presaccadic activity in the monkey primary visual cortex with saccadic eye movements. Hans Supèr, Chris van der Togt, Henk Spekreijse, and Victor A.F.Lamme (2004) PNAS, March 2, 101(9) 3230-3235 [PDF]
  5. The Integration of Colour and Motion by the Human Visual Brain. Matthew W. Self and S. Zeki Cerebral Cortex Advance Access published on December 22, 2004. [PDF]


  1. Internal State of Monkey Primary Visual Cortex (V1) Predicts Figure–Ground Perception. Supèr, H., van der Togt, C., Spekreijse, H. & Lamme, V. A. F. (2003) J. Neuroscience, 23:3407–3414 [PDF]
  2. Subtask sequencing in the primary visual cortex. Roelfsema, P.R., Khayat, P.S. & Spekreijse, H. (2003) Proceedings of the National Academy of Sciences USA, 100, 5467-5472. [PDF]
  3. Working memory in the primary visual cortex. Supèr, H. (2003) Archives of Neurology 60: 809-812.
  4. Figure-ground activity in primary visual cortex (V1) of the monkey matches the speed of behavioral response. Supèr, H., Spekreijse, H., Lamme, V.A.F. (2003) Neurosci. Letters 344, 75-78.
  5. Why do schizophrenic patients hallucinate? Roelfsema, P.R., Supèr, H. (2003) Brain Behavioral Science (in press).
  6. A gradual spread of attention during mental curve tracing. Houtkamp,R., Spekreijse, H., Roelfsema, P.R. (2003) Perception & Psychophysics, 65 (7), 1136-1144 [PDF]


  1. Oscillatory neuronal synchronization in primary visual cortex as a correlate of perceptual stimulus selection. Fries, P., Schröder, J.-H., Singer, W., Roelfsema, P.R., Engel, A.K. (2002) J. Neurosci., 22, 3739-3754. [PDF]
  2. Do neurons predict the future? Roelfsema, P.R. (2002) Science, 295, 227. [PDF]
  3. Figure-ground segregation in a recurrent network architecture. Roelfsema, P.R., Lamme, V.A.F., Spekreijse, H. & Bosch, H. (2002) Journal of Cognitive Neuroscience, 14, 525-537. [PDF]
  4. Ocular dominance in extrastriate cortex of strabismic amblyopic cats. Schröder, J.-H., Fries,P., Roelfsema, P.R., Singer, W., Engel, A.K. (2002). Vision Res., 42, 29-39. [PDF]
  5. Cognitive functions in the primary visual cortex; from perception to memory. Supèr, H. (2002) Review in the Neurosciences, 13:287-298.
  6. Masking interrupts figure-ground signals in V1. Lamme VA, Zipser K, Spekreijse H. J Cogn Neurosci. 2002 Oct 1;14(7):1044-53. [PDF]


  1. Which brain mechanism cannot count beyond four? Roelfsema, P.R. & Lamme, V.A.F. (2001) Behavioral & Brain Sciences, 24, 142-143.
  2. The representation of erroneously perceived stimuli in the primary visual cortex. Roelfsema, P.R. & Spekreijse, H. (2001) Neuron 31, 853-863. [PDF]
  3. The spatial profile of visual attention in mental curve tracing. Scholte, H.S., Spekreijse, H. & Roelfsema, P.R. (2001) Vision Research, 41, 2569-2580. [PDF]
  4. A neural correlate of working memory in the monkey primary visual cortex. Super, H., Spekreijse, H. & Lamme, V.A. Science. (2001) 293, 120-4. [PDF]
  5. Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Supèr, H., Spekreijse, H. & Lamme, V.A. Nat. Neurosci. (2001) 4, 304-10. [PDF]


  1. The effects of pair-wise and higher order correlations on the firing rate of a post-synaptic neuron. Bohte, S., Spekreijse, H. & Roelfsema, P.R. (2000) Neural Computation, 12, 153-179. [PDF]
  2. The role of primary visual cortex (V1) in visual awareness. Lamme, V.A.F., Supèr, H., Landman, R., Roelfsema, P.R. & Spekreijse, H. (2000) Vision Research,40, 1507-1521.
  3. The distinct modes of vision offered by feedforward and recurrent processing. Lamme, V.A.F. & Roelfsema, P.R. (2000) Trends in Neuroscience, 23, 571-579. [PDF]
  4. The implementation of visual routines. Roelfsema, P.R., Lamme, V.A.F. & Spekreijse, H. (2000) Vision Research, 40, 1385-1411. [PDF]


  1. Temporal constraints on the grouping of contour segments into spatially extended objects. Roelfsema, P.R., Scholte, S. & Spekreijse, H. (1999) Vision Research, 39, 1509-1529. [PDF]
  2. Algorithms for the detection of connectedness and their neural implementation. Roelfsema, P.R., Bohte, S. & Spekreijse, H. (1999) In: Burdet, G., Combe, P. & Parodi,O. (Eds.) Neuronal Information Processing: From Biological Data to Modelling and Applications. Series in Mathematical Biology and Medicine, Vol. 7. Singapore: World Scientific[PDF]


  1. Detecting connectedness. Roelfsema, P.R. & Singer, W. (1998) Cerebral Cortex, 8, 385-396.
  2. Solutions for the binding problem. Roelfsema, P.R. (1998) Zeitschrift für Naturforschung C, 53, 691-715.
  3. Object-based attention in the primary visual cortex of the macaque monkey. Roelfsema, P.R., Lamme, V.A.F. & Spekreijse, H. (1998) Nature, 395, 376-381. [PDF]
  4. Functional connectivity within the visual cortex of the rat shows state changes. van der Togt, C., Lamme, V.A.F. & Spekreijse, H. (1998) Eur.J.Neuroscience, 10:1490-1507.[PDF]
  5. Characterization of a directional selective inhibitory input from the medial terminal nucleus to the pretectal nuclear complex in the rat. Schmidt, M., van der Togt, C., Wahle, P., Hoffmann, K.P. (1998) Eur. J. Neurosci. 10:1533-43.
  6. Feedforward, horizontal, and feedback interactions in visual cortical processing. Lamme, V.A.F., Supèr, H., Spekreijse, H. (1998) Current Opinions in Neurobiology 8:529-535.


  1. Role of temporal domain for response selection and perceptual binding. Engel, A.K., Roelfsema, P.R., Fries, P., Brecht, M. & Singer, W. (1997) Cerebral Cortex, 7, 571-582.
  2. Binding and response selection in the temporal domain - a new paradigm for neurobiological research. Engel, A.K., Roelfsema, P.R., Fries, P., Brecht, M., Singer, W. (1997). Theory in Biosciences, 116, 241-266.
  3. Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Fries, P., Roelfsema, P.R., Engel, A. K., König, P. & Singer, W. (1997) Proceedings of the National Academy of Sciences USA, 94, 12699-12704. [PDF]
  4. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Roelfsema, P.R., Engel, A.K., König, P. & Singer, W. (1997) Nature, 385, 157-161.
  5. Neuronal assemblies: necessity, significance, and detectability. Singer, W., Engel, A.K., Kreiter, A.K., Munk, M.H.J., Neuenschwander, S. & Roelfsema, P.R. (1997) Trends in Cognitive Sciences, 1, 252-261.[PDF]


  1. The role of neuronal synchronization in response selection: a biologically plausible theory of structured representations in the visual cortex, Journal of Cognitive Neuroscience, 8, 603-625. Roelfsema, P.R., Engel, A.K., König, P. & Singer, W. (1996)
  2. Role of reticular activation in the modulation of intracortical synchronization. Munk, M.H.J., Roelfsema, P.R., König, P., Engel, A.K., & Singer, W. (1996) Science, 272, 271-274.
  3. Precise timing of neuronal discharges within and across cortical areas: Implications for synaptic transmission. Singer, W., Kreiter, A.K., Engel, A.K., Fries, P., Roelfsema, P.R. & Volgushev, M.(1996) Journal of Physiology (Paris), 90, 221-222


  1. Inhibition of neuronal activity in the nucleus of the optic tract due to electrical stimulation of the medial terminal nucleus in the rat. van der Togt, C., Schmidt, M. (1994) Eur. J. Neurosci. 6:558-64.
  2. The contribution of GABA-mediated inhibition to response properties of neurons in the nucleus of the optic tract in the rat. Schmidt, M., Lewald, J., van der Togt, C., Hoffmann, K.P. (1994) Eur. J. Neurosci. 6:1656-61.


  1. GABAergic neurons and circuits in the pretectal nuclei and the accessory optic system of mammals. van der Want, J.J., Nunes Cardozo. J.J., van der Togt, C. (1992) Prog. Brain Res. 90:283-305. Review.
  2. Variation in form and axonal termination in the nucleus of the optic tract of the rat: the medial terminal nucleus input on neurons projecting to the inferior olive. van der Togt, C., van der Want, J. (1992) J. Comp. Neurol. 325:446-61.


  1. Medial terminal nucleus terminals in the nucleus of the optic tract contain GABA: an electron microscopical study with immunocytochemical double labeling of GABA and PHA-L. van der Togt, C., Nunes Cardozo, B., van der Want, J. (1991) J. Comp. Neurol. 312:231-41.v


  1. Post-fixation horseradish peroxidase tracing in rat fetus and pups. van der Togt, C., Feirabend, H.K. (1990) J. Neurosci Methods. 31:65-73.


  1. Gangliosides restore the specificity of afferent projection patterns in spinal cord explants chronically exposed to tetrodotoxin. Baker, R.E., van der Togt, C. (1986) Neurosci Lett. 67:285-8